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1 Introduction

[ RDR memo* cylindrically symmetrical model, calculated radiation forces and torques on conical and flattop
surfaces, getting precession rates. Introduced idea of nulling precession by adjusting “skirt” angle. Argues for
faster spin.]

[1. Full dynamical model. 2. Solar wind. 3..]

2 Equations of Motion for a Rigid Body

The equations of motion of arigid body can be written
IX%QX"'(IZ' |y)Qsz- Kx=0
|y%gy+(|x- |z)QxQz- Ky=0
|2%Qz+(|y- |x)Qny- K;=0

D)

T e

where the frame of reference is fixed to the body with origin
at the center of mass (the body frame). The (x,y,z) axes are
coincident with the principal axes of the body (i.e., the axes
for which the inertiatensor is diagonal). (I x ly, Iz) arethe
principal moments of inertia of the body; (Qx, Qy, Q z) are
the angular velocities of the body about the principal axes,
and (Kx, Ky, K;) are the components of the external torques
acting on the body viewed in the body frame of reference.

Figure 1

2.1 Euler Angle Rotations between the Fixed and
Body Frames

The particular Euler angles shown in Figure 1 are a conven-
ient choice. The transformation matrix

“(p,w,0) = <2(0) “x(w) < 2(p) (2 | X

which rotates the fixed coordinate frame (X, Y, Z) to the body R(j o ’q) =R, () RX(y ) R.(i)
frame,

'R.D. Reasenberg (1997). “Effects of Radiation Pressure on the Rotation of FAME”, SAO-TM97-03.
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X X
y [=(py,0)] Y 3)
z z
is
c0sf cosg - sinf cosy sing  cosé sing +sinf cosy cosg  sind siny
“(p,w,0)=| - sinf cosgp - cosl cosy sing - sinf sing +cosf cosy cosp cosh siny 4
siny sing - siny cosg CoSy

2.2 The Angular Velocity Vector Components in the Body Frame

The angular velocity vector may be decomposed into components along each of the rotation axes used to con-
struct the transformation matrix. If we transform those components to the body frame, then we can express the
angular velocity vector in the body frame in terms of the Euler angles (p, v, 0). The angular velocity vectors
around the three rotation axes, as viewed in the body frame, are

[0 | sinf siny U
- dp _dp , I
Qp = 4t 0,p,0)| 0 | = gt cosd siny :
|1 | cosy T
LT . :
1 cosf -
s dy . dy . )
Qy = dt (0,00)| 0 | = at - sinf y 5)
L O .0 :
dé 0] dH- 0 !
- do . _de :
Qp = at (0,0,0)] 0 | = dt 0 ;
L1 |1 b
Combining the X, y, and z components, we have
W ng dy
0, gt sind siny + gt cosd
Qp+0y +Qy=| Qy |=| Frooshsiny - - sind (6)
Q; d d
d—fcosz;/ + d_‘tg

2.3 Rigid Body Equations of Motion

Inserting eg. (6) into the Euler equations, egs. (1), we find
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d? I-ly dp)\2 - ly+l do | . u
dtg/ cosf + dtzpsmesml// +[ y(d—f cosy + Z%d—f]smy/cosﬁ i
Ix+ly-1z dg Ix-Iy+lz gp) dy Kx _ |
+( Iy ECOS{/I- Iy d—d—smH-F—O |
|
|
d2 d2 Ix-1y- 1 d . .

- dtglsm(9+ g[)cos@smz// +[IX ! —p) cosz//+x|—§z%d—f]9m//9m9 ]

7 7)

Ixtly-17 do Ix-ly-1 g) % Ky _ y (

"'( Iy dt COs¥ + d_d_COSH'W‘O i
|
|
d29 , d% Ix-ly  dp2 - 2 i
dz T gz Cosy - (E) cosd sinf sin“y |
Ix'ly ) Ix'ly"'lz)d_[//% . Ix y(dl//) . &_ |
+(2—IZ sin<f - P at gt INv + gt cosf sinf - P =0 b

Egs. (7) are therigid body equations of motion expressed in the Euler anglesillustrated in Figure 1.

2.4 Equations of Motion for a Symmetric Top

Consider the case where two of the principal moments of inertia are the same, say Ix = ly = Ixy. Definetheratio

|xy- |z
= |xy (8)
Then egs. (7) become the rigid Symmetric top equations of motion,
d? d dp)2 . u
dtg/ cos0 + 32 dt2 2 sind Slnl//+[(l B) ilfd_{f' ﬁ(d—(f) cosz//]smz// cosf 4
do dy ] K !
[(1+/)’) e dt cosy - (1- BG4 gr ]sm@- ﬁ:o i
|
i
d2 d dp)2 . . i
- dtg/ sind + pcos@smz// (1-/)’)%? d(f ﬁ(d—(f) cosz//]smz//smﬁ ;/ 9)
[
y dp do dy Ky _ i
[(1+ﬁ) at at sy - (1- p) dtﬁ]cosﬁ- W‘O i
i
a20  d% dp dy _ Kz !
== +——=COSy - - —— Siny - =0 |
dtz ~ dt2 dt dt (1- ﬁ)|xy b
Notice that the third equation of egs. (9) can be written
d [de L do ]
4140, %0 s 10
dtUdt " dt ") T (- By 5)|Xy (10)

When K; =0, thisisthe statement of conservation of angular momentum about the symmetry axis. Egs. (9)
may be manipulated and expressed as a system of first-order ODEs:
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de i
& :':
LA i
& :':
i
o = i
Kxsinf +Ky cosé 11
sml//%Q,,, = [@- pQy- @+pcosyQ,]Qy +— iy y ?/( )
d : Kx cosd - Kysing :
v = [ﬁCOSl//Q%- (1- /)’)QgQ,,,]Slny/+ Iy :
0 = [(A+fcos?y) 0y - (1- Peosy 0] 0, +FeSny Kxsinf +Kyoos0 5
sml//dt 0 B cos“y) Qg - (1- f)cosy Qp|Qy (1- ) lyy - Ly cosy i)

The symmetric top equations in the form of egs. (11) are convenient for implementing in a numerical program.
The program SymTop?, discussed later, uses egs. (11).

3 Calculation of Torques Due to Pressure Incident on an Attached Truncated
Cone

Suppose our symmetric top is in the shape of a cylinder, and that this cylinder isimmersed in an environment
with pressures, for example solar radiation and solar wind hitting a spacecraft. Further, suppose we shield the

spacecraft with a conical skirt attached at one end of the craft and sweeping back with cone anglea. The shield
is therefore a frustum of a cone, as shown in Figure 2 (sans spacecraft).

3.1 A Set of Conical Coordinates

For performing integrals of radiation and solar wind pressure over the conical surface, it will be convenient to
define a set of conical coordinates (p,#,a ). Let the
coordinate origin be at the vertex of the cone, which z
isadistance d from the top of the frustum, whichis '
in turn adistance h from the center of mass. Define

the set of unit basis vectors (5, 7,a), a shownin _ £
Figure 2. Flgure 2 d Q)
It is easy to show that the equation for the conical “a _ v
surfaceis .
x2+y2- [(z- h)tana- a]®>=0 (12) L N
h:
The body frame coordinates are obtained from the S :
conical coordinates via SRV
X = p sina cosy IU
= p sina siny y (13) X
— a | y
z—h+tana-pcosa b b

Finaly, the transformation between the conical and
body frames is accomplished via

2SymTop is available at http://aa.usno.navy.mil/SymTop/
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X p
y |=“(a,n)| 7 (14)
7 a
where
Sina cosy - siny COSa COS#
“(a,7) =| sinasiny cosy cosa siny (15)

- CoSa 0 sina

3.2 Force Components Due to Radiation Pressure on a Surface

Consider Figure 3, whered X isan infinitesimal area on the conical surface. Incident radiation will produce per-
pendicular and parallel force components as shown. We have

dF, = (1+A)Pd=|cosyl cosyN IU
dF ) = (1-A)Pd2|cosy|siny% %Ic/) 1o
where A is the surface albedo, P is the magnitude of the inci- -
dent pressure, and the angle gis given by ,l\J|
cosy=P-N (17) % 1
Now,
|P- (F-N)N| =|PxN|=Psiny (18) | Figure3
so that
dF} =(1- A)Pd=lcosyl (P- cosyN) (19)
Hence,
dF =dF. +dF| =Pd=lcosyl [(1- A)P+2AcosyN] (20) ds
For smplicity, we will assume that the pressures are aways
incident on the “top” of the conical surface, that is,
Pe{<3|P.N<0} (21)
Then we may define the incidence angle ,
cosy =-(P-N) (22)
Theinfinitesmal force components, egs. (16), become
dF. = -(1+A)PdZ cos?yN f
0, = (1- AYPAE cosy B+ cosyN) P @
so that the infinitesmal forceis
dF =dF. +dF| =PdZcosy[(1- A)P- 2Acosy N] (24)
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3.3 Force and Torque Components Due to Radiation Pressure on the Cone Surface

L et the pressure vector components in the fixed frame be (Py, Py,Pz). Then the componentsin the conical
frame are

Py Px
Py |=<(a,n) 1 =(p,p,0)| Py (25)
Pa PZ

SinceP-N =P, the component of P along @, we have, from eq. (25),

a

= -{cosa[cosy (cosd cosg - sind cosy sing)
- siny (sinf cosg + cos cosy sing)] +sina siny sinp}
- {cosa [cos# (cosf sing +sinf cosy cosp) (26)
- siny(sinf sing - cosf cosy cosp)] - sina siny cose} ny
- [cosa (cosy sind siny +siny cosl siny) +sina cosy] nz

_ P
cosy = -5

where we have defined
RXEE—X RYEFF:—Y RZEFF:—Z (27)
We are now in aposition to integrate eg. (24) over the surface of the cone,

Fp 271 (S Pp ) 0 _
Fy =§o yf (1- Ac)cosy| Py |- 2AcPcos?y| O ||psinadpdy (28)

where isthe abedo of the conical surface, and the integration limits are defined in Figure 2. Thetorque, in the
conica coordinate frame, isthen

Ky 27 (48 Pp 0
Ky =§O jf Fx|(1- Ac)cosy Py |- 2Ac PCOSZX 0 ||psinadpdy (29)
Ka Pa 1

where 1 is the vector from the center of mass to a point on the cone. Using egs. (13) and (15), we have

X p sina cosy -hcosa-a%+p
r=<(a,n) Yy |[=@n)"? psmaasm;7 = 0 (30)
z h+tang = 1 C0Sa hsina +a cosa

Substituting eg. (30) into eg. (29), performing the integral in , and smplifying, we find

K, . -B1Py cosy
Ky | = yo B1P,cosy - Bo[(1- Ac)Pgy cosy - 2PAc cos?y] |dy (31)
K, B2(1- Ac) Py cosy

where
2.2
By = %(1 - Ac)(h sina + acosa)%
(32
a cosza) (b%-a?)

3 sna sna sina

T T o

By = %(;M_ h cosa -

Now make use of eg. (15) to transform back to the Cartesian body frame.
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Ky . - B]_Pﬂ COSy
Ky | = jo “(a,n)| B1P,cosy- By[(1- Ac)P,cosy- 2PAc cos?y] |dy (33)
KZ Bz(l- Ac)Pﬂ COSy

Finally, performing the remaining integral and smplifying, we find the result

ny (cosy cosfsing +sinf cos¢g) +ny (sinfsing - cosy cosf cos¢g) - nz cosfsiny

Kx
Ky |=U| -=zx (cosysindsing +cosfcosg) +ry (cosfsing + cosy sinfcosg) +rzsinfsiny | (34)
K;
0
where
U=(zyxsingsiny - mysiny cos¢ + nz cosy) [B1(cos2a - 2 sina) + Bo(3+Ac) cosasina] (35)
3.4 Force and Torque Components Due to Radiation Pres- Z

sure on the “Flattop’” Surface |

Now we will calculate the torque due to an incident pressure on
the top of the frustum, the “flattop”. From eqg. (24), we have the
infinitesmal force on a surface e ement, r

dF =dF. +dF| =Pd=cosy[(1- A7)P- 2A7cosyN] (36)
where At istheflattop (“Top”) albedo. The pressure in the body

frameis h
Px PX
Py =* (gp’ v, 0) PY (37)
P; Pz Figure 4
The N component of the pressureisP - 7, so the incidence angle is
cosxz-g—zz-nxsin(psinl// +rysiny cosp - nzcosy  (38) /\
Hence, we have X y
Kx on na |l T cos/ Px 0
Ky |= jo jo rsini | x|(1- At)cosy| Py |- 2ATPcos?y| O ||rdrdi (39)
KZ h Pz 1

wherer and | are defined in Figure 4. Performing the integrations, we find the result

Kx nx (sind cosg +cosf cosy sing) +ny (sind sing - cosf cosy cos¢) - nz cosd siny
Ky [=V| nx(cosf cosg - sinf cosy sing) +ry (cosd sing +sinf cosy cosg) +nz sinf siny (40)
Kz 0

where

V=Pra2h(1- A7)(- nx sing siny + 7y siny cos¢ - 77 CoSy) (41)
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4 The Equations of Motion

Now we may substitute the torque contributions from the cone surface and from the flattop surface, egs. (34)
and (40), into the equations of motion, egs. (11). Doing so, we find, after some algebra, that

dp a
e Q, :
dy |
dt - S i
dp _ i
S 2 v (42
sjm//agg,, = (- pQy - @W+PcosyQ,|Qy + Ka(a,b,h,a,Ac,AT,0,¥) !
[/)’ COSI/IQq, (1- ﬁ)QgQ,/,]Slnz,// + Ko(a,b,h,a,Ac,AT,0,v) :
smz//dtgg = [(1+Bc0os?yp)Q, - (1- B cosy Q| Qy + Ka(a,b,h,a,Ac, AT, 0, v) i)
where
Kl(a,b,h,a,AC,AT,gp,l//) = G(a,b,h,a,Ac,AT)'gl((D,l/l) IU
Ka(@,b,h,a,Ac,A1,0,¥) = G(a,b,h,a,Ac,At)-92(p, ) ?/ (43)
K3(a,b,h,a,Ac,AT,g0, l/l) = -G(a,b,h,a,AC,AT)-Cosy/-g3(q), l//) p
golp,¥) = - mx Sing Siny + ny siny oSy - 7z CoSy u
91(p,w) = dolp,w)- (nx cosp + my sing) L
- ( TN ) inw) y (44)
92(p,w) = golg, y) - (nx cosy sing - my COSy COSp - mz Siny i
93(p. ) = 91(p ) b
G(a,b,h,a,Ac,AT) = Ge(a,b,h,a,Ac) + Gr(a,h, A7) :
. . (b2 - a?)
Ge(a,b,hya,Ac) = %% (1- Ac)(2sin?a - cos?a) (hsina + acosa)si—na : A
2b- cosza) 5 ] y
(3+Ac)COSa(3 Sng - hcosa - atg (b= - a%) :
_ P 2
Gt(a,h,A = 7+—(1- A7)a‘h I
7( T) Ty T b

Equations (42)-(45) are the fina form for our symmetric, conically shielded spinning spacecraft. They consist
of terms describing force-free motion (the terms containing b), with the addition of perturbative terms due to
pressures on the top of the spacecraft and on the protective conical shield. These equations have been imple-
mented in the numerical program, SymTop.

5 Precession

Let us assume afast-spinning top, so that Q. >>Q,,Q,, . Further, assume the pressure terms are small. Tak-
ing the last three equations of egs. (42), differentiating them, then dropping terms beyond first order in the small
guantities, we find
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sinl//gTZZQ,,, = Q- /)’)QW%+ (1- ﬁ)Qedfftl// Iu
37229‘” = - POy g siny - (1'ﬁ)sinwﬁe% %’ (46)
COSWQW%JrSin(W)(?TZZQ" =-@- /’))QW% cosy - (1- ﬁ)coswﬁe% |IO
Next, substitute egs. (42) for the first-order derivativesin (46), again keeping first order terms, we have the
result
anwgtzzﬁgo = -(1- P)?2Q5Q,siny + (1- f)QyKa(a,b,h,a,Ac,AT,0,v) |u
gTzzgw = -(1- 2020, - (1 PHQyKa(ab,ha,Ac,AT,p, ) %, 47)
SlnngzzQa = [(1- B2Q%Q,sny - (1- p)Qy Kz(a,b,h,a,AC,AT,go,y/)]cosl/, ;O
d2

Since Q) islarge, we can assumeit is slowly varying compared to Q, and ©,,. Hence, we may set 120~ 0.
For the third equation of egs. (47) to hold, then we require
Ka(@,b,h,a,Ac,AT,0,¥)

Qp= (1- §)psiny (48)
If we further assume that the pressure is mainly along the fixed-frame Z axis, 7z >> nx, ny, then eqg. (48)
becomes
Tz . cosy - siny
Q(/) = m Tz COSy - (TCX SiNg - y COSQ)T G(a,b,h,a,AC,AT) (49)

This equation becomes more clear by further letting 7y =7y =0, 7z =1, Ac=At=Aanda = % Then we
have

2

Recall that y isthe inclination of the symmetry axis to the fixed-frame Z axis. [plug ‘n chug some numbers...]

5.1 Precession Nulling

We may adjust the cone angle a to control the precession rate. Let usfind the angle such that the precession is
nulled (i.e., the torques cancel out). From eg. (49), we see that this requires

G(a,b,h,a,Ac,AT)=0 (51)
Referring to eg. (45), we find that this is equivalent to requiring
%(Zsinza - cos2a) (h sina+acosa)(1- Ac)

2n(1-
.2 ;2(1_ bA2 )sina +%(3+AC)[2(a- b) +3cosa (h sina +acosa )] cosa = 0 (52)

The solution of eg. (52) for awill be near . Hence, substitute
a=%+X18+X282 (53

into eg. (52). Solving for x1 and x, and letting ¢ - 1, we find
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A bz-azAT
C~ p2.32 T
X1 = h 54 / \
! Z(2a+b)Ac - 2a+b S /
and , /
b2_ aZA b2_ aZA 1 /
, (5Ac- 5 J(Ac - ) /
X2=- % 3 h3 (55) | .
[1(2a+b)Ac - 2a+b]
[Plug and chug] obo ) E) /’ma.phz 6o o o Tto
-05 \\\/

6 Numerical Results for the Combined
Effects of Solar Wind and Solar Radiation Pressures

[Blah blah blah..]

This run:

‘ SymTop

| Help
' Ifi | rad pressure | solar wind |
ICs geametry | albedos |
—beta I[xv] cone angle
0.1 |150 |a7.03
—top radius —cone length b
|t |2 |1

(NNNEENRNENRNARRNRRRNARRRARRRARRNARRNRRRNARRNARRRARREEn]

LDadCL Savel Run |

|load settings fram .ini file
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